Sains Malaysiana 54(9)(2025): 2185-2199

http://doi.org/10.17576/jsm-2025-5409-07

 

Synthesis, Molecular Docking and Dynamic Studies of 3-Cyano-6-Hydroxy-5-Pentaloxy N-Boc Cyclohexene as Key Intermediate for Oseltamivir Phosphate

(Sintesis, Pendokan Molekul dan Dinamik 3-Siano-6-Hidroksi-5-Pentaloksi N-Boc Sikloheksena sebagai Perantara Penting bagi Oseltamivir Fosfat)

 

ZURHANA MAT HUSSIN1, NAJMAH P.S HASAN2, FAZNI SUSILA ABD GHANI2, SHAARI DAUD1, MOHD SALLEH ROFIEE2,3, SYAHRUL IMRAN2,4 & MOHD TAJUDIN MOHD ALI2,*

 

1Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Pahang, 26400 Bandar Tun Abdul Razak, Pahang, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
3Integrative Pharmacogenomics, Puncak Alam Campus, Universiti Teknologi MARA, 42300
Puncak Alam, Selangor, Malaysia
4Institute for Natural Product Discovery, Puncak Alam Campus, Universiti Teknologi MARA, 42300
Puncak Alam,
Selangor, Malaysia

 

Received: 9 April 2025/Accepted: 18 July 2025

 

Abstract

A key intermediate for oseltamivir phosphate synthesis, compound 15 (3-cyano-6-hydroxy-5-pentaloxy-N-Boccyclohexene), was synthesized from inexpensive, commercially available 1,4-cyclohexadiene (4). The synthesis involved eight steps, sequentially introducing substituents onto a cyclohexene ring: An amino group at C1, hydroxy at C6, pentaloxy at C5, and cyano at C3. C1 amination was achieved via epoxidation and asymmetric ring opening using a salen complex and TMSN₃. The C6 hydroxy group was introduced via one-pot reduction and amine protection. C5 functionalization involved allylic oxidation (SeO₂/TBHP) and etherification with 3-pentanol. The C3 cyano group was formed via olefin epoxidation, TMSCN ring opening, and elimination. Molecular docking showed compound 15 had a binding energy of -7.14 kcal/mol, comparable to oseltamivir (-8.5 kcal/mol), suggesting strong neuraminidase binding. A 200 ns molecular dynamics simulation confirmed complex stability, with RMSF analysis indicating stable interactions. The ADMET profile indicates that these compounds exhibit good drug-like properties, including high gastrointestinal (GI) absorption, good solubility, and no inhibition of CYP450 enzymes.

 

Keywords: Dynamic; epoxidation; neuraminidase; oseltamivir; salen catalyst

 

Abstrak

Sebatian perantaraan utama untuk sintesis oseltamivir fosfat, sebatian 15 (3-siano-6-hidroksi-5-pentaloksi-N-Boccyclohexene), telah disintesis daripada 1,4-sikloheksadiena (4) yang murah dan tersedia secara komersial. Sintesis ini melibatkan lapan langkah dengan kumpulan pengganti diperkenalkan secara berurutan ke atas gelang sikloheksena: kumpulan amino pada karbon-1, hidroksi pada karbon-6, pentaloksi pada karbon-5 dan siano pada karbon-3. Penggabungan kumpulan amino pada C1 dicapai melalui tindak balas epoksidasi dan pembukaan gelang tak simetri menggunakan kompleks salen dan TMSN₃. Kumpulan hidroksi pada C6 diperkenalkan melalui penurunan satu langkah dan perlindungan amina. Penggantian pada C5 melibatkan pengoksidaan alilik (SeO₂/TBHP) dan eterifikasi dengan 3-pentanol. Kumpulan siano pada C3 dibentuk melalui epoksidasi olefin, pembukaan gelang dengan TMSCN dan tindak balas penyingkiran. Kajian pendokan molekul menunjukkan sebatian 15 mempunyai tenaga pengikatan sebanyak –7.14 kcal/mol, setanding dengan oseltamivir (-8.5 kcal/mol), menunjukkan ikatan yang kuat dengan tapak aktif neuraminidase. Simulasi dinamik molekul selama 200 ns mengesahkan kestabilan kompleks, dengan analisis RMSF menunjukkan interaksi yang stabil. Profil ADMET menunjukkan sebatian-sebatian ini memenuhi ciri ubat yang baik, termasuk penyerapan gastrousus (GI) yang tinggi, keterlarutan yang baik dan tiada perencatan enzim CYP450.

 

Kata kunci: Dinamik; epoksidasi; mangkin salen; neuraminidase; Oseltamivir

 

REFERENCES

Abrecht, S., Harrington, P., Iding, H., Karpf, M., Trussardi, R., Zutter, U. & Karpf, M. 2004. The synthetic development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu ®): A Challenge for Synthesis & Process Research. CHIMIA 58(9): 621-629.

Ali, M.T.M., Husin, Z.M. & Macabeo, A.P.G. 2021. Asymmetric synthesis of N,O-heterobicyclic octanes and (-)-Geissman-Waiss-Lactone. ACS Omega 6(38): 24614-24618.

Blanksby, S.J. & Ellison, G.B. 2003. Bond dissociation energies of organic molecules. Accounts of Chemical Research 36(4): 255-263.

Chen, C.A. & Fang, J.M. 2013. Synthesis of oseltamivir and tamiphosphor from N-acetyl-d-glucosamine. Organic and Biomolecular Chemistry 11(44): 7687-7699.

Cong, X. & Yao, Z.J. 2006. Ring-closing metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5- amino-3-hydroxy-cyclohex-1-ene-carboxylic acid ethyl ester: A functionalized cycloalkene skeleton of GS4104. Journal of Organic Chemistry 71(14): 5365-5368.

Davies, B.E. 2010. Pharmacokinetics of oseltamivir: An oral antiviral for the treatment and prophylaxis of influenza in diverse populations. The Journal of Antimicrobial Chemotherapy 65(2): ii5-ii10.

Hansen, K.B., Leighton, J.L. & Jacobsen, E.N. 1996. On the mechanism of asymmetric nucleophilic ring-opening of epoxides catalyzed by (salen) CrIII complexes. Journal of the American Chemical Society 118(44): 10924-10925.

Harrington, P.J., Brown, J.D., Foderaro, T. & Hughes, R.C. 2004. Research and development of a second-generation process for oseltamivir phosphate, prodrug for a neuraminidase inhibitor. Organic Process Research and Development 8(1): 86-91.

Ishikawa, H., Suzuki, T. & Hayashi, Y. 2009. High-yielding synthesis of the anti-influenza neuramidase inhibitor (−)-Oseltamivir by three “one-pot” operations. Angewandte Chemie 121(7): 1330-1333.

Karpf, M. & Trussardi, R. 2001. New azide-free transformation of epoxides into 1,2-diamino compounds: Synthesis of the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). Journal of Organic Chemistry 66(6): 2044-2051.

Kim, C.U., Lew, W., Williams, M.A., Liu, H., Zhang, L., Swaminathan, S. & Stevens, R.C. 1997. Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: Design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. Journal of the American Chemical Society 119(4): 681-690.

Kotsuki, H., Ohishi, T. & Araki, T. 1997. A new facile method for the chemoselective reductive transformation of azides to N-(tert-butoxycarbonyl)amines. Tetrahedron Letters 38(12): 2129-2132.

Martínez, L.E., Leighton, J.L., Carsten, D.H. & Jacobsen, E.N. 1995. Highly enantioselective ring opening of epoxides catalyzed by (salen)Cr(III) complexes. Journal of the American Chemical Society 117(21): 5897-5898.

Mita, T., Fukuda, N., Roca, F.X., Kanai, M. & Shibasaki, M. 2007. Second generation catalytic asymmetric synthesis of tamiflu: Allylic substitution route. Organic Letters 9(2): 259-262. 

Murphy, E.F., Mallat, T. & Baiker, A. 2000. Allylic oxofunctionalization of cyclic olefins with homogeneous and heterogeneous catalysts. Catalysis Today 57(1-2): 115-126.

Perlman, N. & Albeck, A. 2000. Efficient and stereospecific synthesis of (Z)-hex-3-enedioic acid, a key intermediate for Gly-Gly cis olefin isostere. Synthetic Communications 30(24): 4443-4449.

Sagandira, C.R. & Watts, P. 2020. Continuous-flow synthesis of (-)-oseltamivir phosphate (Tamiflu). Synlett 31(19): 1925-1929.

Sagandira, C.R. & Watts, P. 2019. Efficient continuous flow synthesis of ethyl shikimate: The first step in the synthesis of Tamiflu. Journal of Flow Chemistry 9(2): 79-87.

Satoh, N., Akiba, T., Yokoshima, S. & Fukuyama, T. 2009. A practical synthesis of (-)-oseltamivir. Tetrahedron 65(16): 3239-3245.

Shibasaki, M., Kanai, M. & Yamatsugu, K. 2011. Recent development in synthetic strategies for oseltamivir phosphate. Israel Journal of Chemistry 51(3-4): 316-328.

Shie, J.J., Fang, J.M., Wang, S.Y., Tsai, K.C., Cheng, Y.S.E., Yang, A.S., Hsiao, S.C., Su, C.Y. & Wong, C.H. 2007. Synthesis of tamiflu and its phosphonate congeners possessing potent anti-influenza activity. Journal of the American Chemical Society 129(39): 11892-11893.

Singh, P., Gupta, E.,  & Mishra, N. 2020. Shikimic acid as intermediary model for the production of drugs effective against influenza virus. Phytochemicals as Lead Compounds for New Drug Discovery 2020: 245-256.

Trajkovic, M., Ferjancic, Z. & Saicic, R.N. 2011. An aldol approach to the enantioselective synthesis of (-)-oseltamivir phosphate. Organic and Biomolecular Chemistry 9(20): 6927-6929.

World Health Organization. 2016. Influenza. https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/influenza

Yeung, Y.Y., Hong, S. & Corey, E.J. 2006. A short enantioselective pathway for the synthesis of the anti-influenza neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. Journal of the American Chemical Society 128(19): 6310-6311.

Zhu, S., Yu, S., Wang, Y. & Ma, D. 2010. Organocatalytic Michael addition of aldehydes to protected 2-amino-1-nitroethenes: The practical syntheses of Oseltamivir (Tamiflu) and substituted 3-aminopyrrolidines. Angewandte Chemie 49(27): 4656-4660.

Zutter, U., Iding, H., Spurr, P. & Wirz, B. 2008. New efficient synthesis of oseltamivir phosphate (Tamiflu) via enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. Journal of Organic Chemistry 73(13): 4895-4902.

 

*Corresponding author; email: tajudinali@uitm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next