Sains Malaysiana 54(9)(2025): 2185-2199
http://doi.org/10.17576/jsm-2025-5409-07
Synthesis, Molecular Docking and Dynamic Studies of
3-Cyano-6-Hydroxy-5-Pentaloxy N-Boc Cyclohexene as Key Intermediate for
Oseltamivir Phosphate
(Sintesis, Pendokan
Molekul dan Dinamik 3-Siano-6-Hidroksi-5-Pentaloksi N-Boc Sikloheksena sebagai
Perantara Penting bagi Oseltamivir Fosfat)
ZURHANA MAT HUSSIN1, NAJMAH P.S HASAN2,
FAZNI SUSILA ABD GHANI2, SHAARI DAUD1, MOHD SALLEH ROFIEE2,3,
SYAHRUL IMRAN2,4 & MOHD TAJUDIN MOHD ALI2,*
1Faculty of Applied Sciences, Universiti
Teknologi MARA, Cawangan Pahang, 26400 Bandar Tun Abdul Razak, Pahang, Malaysia
2Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah
Alam, Selangor, Malaysia
3Integrative
Pharmacogenomics, Puncak Alam Campus, Universiti Teknologi MARA, 42300
Puncak Alam, Selangor, Malaysia
4Institute for Natural Product Discovery,
Puncak Alam Campus, Universiti Teknologi MARA, 42300
Puncak Alam, Selangor,
Malaysia
Received: 9 April 2025/Accepted: 18 July 2025
Abstract
A key
intermediate for oseltamivir phosphate synthesis, compound 15 (3-cyano-6-hydroxy-5-pentaloxy-N-Boccyclohexene), was synthesized from
inexpensive, commercially available 1,4-cyclohexadiene (4). The
synthesis involved eight steps, sequentially introducing substituents onto a
cyclohexene ring: An amino group at C1, hydroxy at C6, pentaloxy at C5, and
cyano at C3. C1 amination was achieved via epoxidation and asymmetric
ring opening using a salen complex and TMSN₃. The C6 hydroxy group was
introduced via one-pot reduction and amine protection. C5 functionalization
involved allylic oxidation (SeO₂/TBHP) and etherification with
3-pentanol. The C3 cyano group was formed via olefin epoxidation, TMSCN
ring opening, and elimination. Molecular docking showed compound 15 had
a binding energy of -7.14 kcal/mol, comparable to oseltamivir (-8.5 kcal/mol),
suggesting strong neuraminidase binding. A 200 ns molecular dynamics simulation
confirmed complex stability, with RMSF analysis indicating stable interactions.
The ADMET profile indicates that these compounds exhibit good drug-like
properties, including high gastrointestinal (GI) absorption, good solubility,
and no inhibition of CYP450 enzymes.
Keywords:
Dynamic; epoxidation; neuraminidase; oseltamivir; salen catalyst
Abstrak
Sebatian
perantaraan utama untuk sintesis oseltamivir fosfat, sebatian 15 (3-siano-6-hidroksi-5-pentaloksi-N-Boccyclohexene), telah disintesis
daripada 1,4-sikloheksadiena (4) yang murah dan tersedia secara komersial.
Sintesis ini melibatkan lapan langkah dengan kumpulan pengganti diperkenalkan
secara berurutan ke atas gelang sikloheksena: kumpulan amino pada karbon-1,
hidroksi pada karbon-6, pentaloksi pada karbon-5 dan siano pada karbon-3.
Penggabungan kumpulan amino pada C1 dicapai melalui tindak balas epoksidasi dan
pembukaan gelang tak simetri menggunakan kompleks salen dan TMSN₃.
Kumpulan hidroksi pada C6 diperkenalkan melalui penurunan satu langkah dan
perlindungan amina. Penggantian pada C5 melibatkan pengoksidaan alilik
(SeO₂/TBHP) dan eterifikasi dengan 3-pentanol. Kumpulan siano pada C3
dibentuk melalui epoksidasi olefin, pembukaan gelang dengan TMSCN dan tindak
balas penyingkiran. Kajian pendokan molekul menunjukkan sebatian 15 mempunyai tenaga pengikatan sebanyak –7.14 kcal/mol, setanding dengan
oseltamivir (-8.5 kcal/mol), menunjukkan ikatan yang kuat dengan tapak aktif
neuraminidase. Simulasi dinamik molekul selama 200 ns mengesahkan kestabilan
kompleks, dengan analisis RMSF menunjukkan interaksi yang stabil. Profil ADMET
menunjukkan sebatian-sebatian ini memenuhi ciri ubat yang baik, termasuk
penyerapan gastrousus (GI) yang tinggi, keterlarutan yang baik dan tiada
perencatan enzim CYP450.
Kata kunci:
Dinamik; epoksidasi; mangkin salen; neuraminidase; Oseltamivir
REFERENCES
Abrecht, S., Harrington, P., Iding, H.,
Karpf, M., Trussardi, R., Zutter, U. & Karpf, M. 2004. The synthetic
development of the anti-influenza neuraminidase inhibitor oseltamivir phosphate
(Tamiflu ®): A Challenge for Synthesis & Process Research. CHIMIA 58(9): 621-629.
Ali, M.T.M., Husin, Z.M. & Macabeo,
A.P.G. 2021. Asymmetric synthesis of N,O-heterobicyclic octanes and
(-)-Geissman-Waiss-Lactone. ACS Omega 6(38): 24614-24618.
Blanksby, S.J. & Ellison, G.B. 2003.
Bond dissociation energies of organic molecules. Accounts of Chemical
Research 36(4): 255-263.
Chen, C.A. & Fang, J.M. 2013. Synthesis
of oseltamivir and tamiphosphor from N-acetyl-d-glucosamine. Organic and
Biomolecular Chemistry 11(44): 7687-7699.
Cong, X. & Yao, Z.J. 2006. Ring-closing
metathesis-based synthesis of (3R,4R,5S)-4-acetylamino-5-
amino-3-hydroxy-cyclohex-1-ene-carboxylic acid ethyl ester: A functionalized
cycloalkene skeleton of GS4104. Journal of Organic Chemistry 71(14):
5365-5368.
Davies, B.E. 2010. Pharmacokinetics of
oseltamivir: An oral antiviral for the treatment and prophylaxis of influenza
in diverse populations. The Journal of Antimicrobial Chemotherapy 65(2):
ii5-ii10.
Hansen, K.B., Leighton, J.L. &
Jacobsen, E.N. 1996. On the mechanism of asymmetric nucleophilic ring-opening
of epoxides catalyzed by (salen) CrIII complexes. Journal of the
American Chemical Society 118(44): 10924-10925.
Harrington, P.J., Brown, J.D., Foderaro, T.
& Hughes, R.C. 2004. Research and development of a second-generation
process for oseltamivir phosphate, prodrug for a neuraminidase inhibitor. Organic
Process Research and Development 8(1): 86-91.
Ishikawa, H., Suzuki, T. & Hayashi, Y.
2009. High-yielding synthesis of the anti-influenza neuramidase inhibitor
(−)-Oseltamivir by three “one-pot” operations. Angewandte Chemie 121(7): 1330-1333.
Karpf, M. & Trussardi, R. 2001. New
azide-free transformation of epoxides into 1,2-diamino compounds: Synthesis of
the anti-influenza neuraminidase inhibitor oseltamivir phosphate (Tamiflu). Journal
of Organic Chemistry 66(6): 2044-2051.
Kim, C.U., Lew, W., Williams, M.A., Liu,
H., Zhang, L., Swaminathan, S. & Stevens, R.C. 1997. Influenza
neuraminidase inhibitors possessing a novel hydrophobic interaction in the
enzyme active site: Design, synthesis, and structural analysis of carbocyclic
sialic acid analogues with potent anti-influenza activity. Journal of the
American Chemical Society 119(4): 681-690.
Kotsuki, H., Ohishi, T. & Araki, T.
1997. A new facile method for the chemoselective reductive transformation of
azides to N-(tert-butoxycarbonyl)amines. Tetrahedron Letters 38(12):
2129-2132.
Martínez, L.E., Leighton, J.L., Carsten,
D.H. & Jacobsen, E.N. 1995. Highly enantioselective ring opening of
epoxides catalyzed by (salen)Cr(III) complexes. Journal of the American
Chemical Society 117(21): 5897-5898.
Mita, T., Fukuda, N., Roca, F.X., Kanai, M.
& Shibasaki, M. 2007. Second generation catalytic asymmetric synthesis of
tamiflu: Allylic substitution route. Organic Letters 9(2): 259-262.
Murphy, E.F., Mallat, T. & Baiker, A.
2000. Allylic oxofunctionalization of cyclic olefins with homogeneous and
heterogeneous catalysts. Catalysis Today 57(1-2): 115-126.
Perlman, N. & Albeck, A. 2000.
Efficient and stereospecific synthesis of (Z)-hex-3-enedioic acid, a key
intermediate for Gly-Gly cis olefin isostere. Synthetic Communications 30(24): 4443-4449.
Sagandira, C.R. & Watts, P. 2020.
Continuous-flow synthesis of (-)-oseltamivir phosphate (Tamiflu). Synlett 31(19): 1925-1929.
Sagandira, C.R. & Watts, P. 2019.
Efficient continuous flow synthesis of ethyl shikimate: The first step in the
synthesis of Tamiflu. Journal of Flow Chemistry 9(2): 79-87.
Satoh, N., Akiba, T., Yokoshima, S. &
Fukuyama, T. 2009. A practical synthesis of (-)-oseltamivir. Tetrahedron 65(16): 3239-3245.
Shibasaki, M., Kanai, M. & Yamatsugu,
K. 2011. Recent development in synthetic strategies for oseltamivir phosphate. Israel
Journal of Chemistry 51(3-4): 316-328.
Shie, J.J., Fang, J.M., Wang, S.Y., Tsai,
K.C., Cheng, Y.S.E., Yang, A.S., Hsiao, S.C., Su, C.Y. & Wong, C.H. 2007.
Synthesis of tamiflu and its phosphonate congeners possessing potent
anti-influenza activity. Journal of the American Chemical Society 129(39): 11892-11893.
Singh, P., Gupta, E., & Mishra, N. 2020. Shikimic acid as
intermediary model for the production of drugs effective against influenza
virus. Phytochemicals as Lead Compounds for New Drug Discovery 2020:
245-256.
Trajkovic, M., Ferjancic, Z. & Saicic,
R.N. 2011. An aldol approach to the enantioselective synthesis of
(-)-oseltamivir phosphate. Organic and Biomolecular Chemistry 9(20):
6927-6929.
World Health Organization. 2016. Influenza.
https://www.who.int/teams/health-product-policy-and-standards/standards-and-specifications/vaccines-quality/influenza
Yeung, Y.Y., Hong, S. & Corey, E.J.
2006. A short enantioselective pathway for the synthesis of the anti-influenza
neuramidase inhibitor oseltamivir from 1,3-butadiene and acrylic acid. Journal
of the American Chemical Society 128(19): 6310-6311.
Zhu, S., Yu, S., Wang, Y. & Ma, D.
2010. Organocatalytic Michael addition of aldehydes to protected
2-amino-1-nitroethenes: The practical syntheses of Oseltamivir (Tamiflu) and
substituted 3-aminopyrrolidines. Angewandte Chemie 49(27): 4656-4660.
Zutter, U., Iding, H., Spurr, P. &
Wirz, B. 2008. New efficient synthesis of oseltamivir phosphate (Tamiflu) via
enzymatic desymmetrization of a meso-1,3-cyclohexanedicarboxylic acid diester. Journal
of Organic Chemistry 73(13): 4895-4902.
*Corresponding author; email:
tajudinali@uitm.edu.my